מציג תוצאות 1 עד 2 מתוך 2

אשכול: חדו"א 2 - משוואת המישור

  1. #1
    משתמש רשום

    פרטי משתמש

    ברירת מחדל חדו"א 2 - משוואת המישור

    שלום,
    אשמח לעזרה בשאלות שמצורפת.
    קבצים מצורפים קבצים מצורפים
    אהבתי חדו"א 2 - משוואת המישורam12348 אהב \ אהבו את התגובה
     

  2. #2
    מדריך ויועץ חבר Emath

    פרטי משתמש

    ברירת מחדל פתרון התרגיל השני

    שבוע טוב,

    מרחק כל נקודה במישור המבוקש ממישור אחד שווה למרחקה מהמישור השני
    שני מישורים מקיימים את הנדרש תלוי באיזה צד נמצא המישור

    ניתן לראות זאת בשרטוט יש לנו שני מישורים p1 ו-p2 בצבע שחור

    כל נקודה על המישורים p3 בצבע אדום ו-p4 בצבע כחול נמצאת במרחק שווה מן המישורים

    כמו במישור: כשנתונות משוואות שני ישרים ורוצים למצוא את משוואת חוצה הזווית ביניהם - מוצאים את
    משוואת הישר שחוצה זווית אחת בין שני ישרים ומשוואת ישר שחוצה את הזווית הצמודה לה

    תהי x,y,z נקודה על המישור המבוקש

    מרחקה מהמישור שמשוואתו 2z+4y+4x+3=0

    $\frac{4x+4y+2z+3}{\sqrt{4^2+4^2+2^2}}=\frac{4x+4y +2z+3}{\sqrt{36}}=\pm\frac{4x+4y+2z+3}{6}$
    סימון המרחק בפלוס ובמינוס תלוי באיזה צד מהמישור נמצאת הנקודה



    באותו אופן מרחקה מהמישור שמשוואתו 4z-2y+4x+4=0

    $\frac{4x-2y+4z+4}{\sqrt{4^2+(-2)^2+4^2}}=\frac{4x-2y+4z+4}{\sqrt{36}}=\pm\frac{4x-2y+4z+4}{6}$
    סימון המרחק בפלוס ובמינוס תלוי באיזה צד מהמישור נמצאת הנקודה

    הנקודות צריכות לקיים את הדרישה שמרחקן בערך מוחלט משני המישורים הנתונים שווה. לכן נקבל את המשוואה

    $\pm\frac{4x+4y+2z+3}{6}=\pm\frac{4x-2y+4z+4}{6}$

    נקבל שתי משוואות מישורים. תלוי בסימן

    אם הסימנים בשני האגפים שווים נקבל

    $\frac{4x+4y+2z+3}{6}=\frac{4x-2y+4z+4}{6} \to 4x+4y+2z+3=4x-2y+4z+4 \to 6y-2z-1=0$


    אם הסימנים בשני האגפים שונים נקבל

    $\frac{4x+4y+2z+3}{6}=-\frac{4x-2y+4z+4}{6} \to 4x+4y+2z+3=-(4x-2y+4z+4) \to 4x+4y+2z+3 = -4x+2y-4z-4 \to 8x+2y+6z+7=0$





    משוואות המישורים אם כן:

    $6y-2z-1=0$

    $8x+2y+6z+7=0$

    בברכה
    עמוס
    קבצים מצורפים קבצים מצורפים
    אהבתי matan1212 אהב \ אהבו את התגובה
     

מידע אודות האשכול הנוכחי

Users Browsing this Thread

כרגע 1 משתמשים צופים באשכול זה. (0 חברים ו 1 אורחים )

ביקרו באשכול זה : 10

הרשאות

  • אתה לא יכול לפרסם אשכולות חדשים
  • אתה לא יכול לפרסם תגובות
  • אתה לא יכול לצרף קבצים להודעותיך
  • אתה לא יכול לערוך את הודעותיך
  •  
אודות Emath
האתר Emath הינו יוזמה פרטית והוקם בתחילת שנת 2008 .
מטרתנו הינה למנף את הישגי התלמידים למתמטיקה ופיסיקה בארץ בכלל ובפרט בקרב תלמידי התיכון .
אנו מספקים מספר שירותים לתלמיד, ביניהם גישה למאות אלפי פתרונות איכותיים לתרגילים, פורום עזרה במתמטיקה ופיסיקה הגדול מסוגו בארץ, מאגר סיכומים, מרתונים בוידאו, פתרונות לבגרויות ועוד.
כלים אלו, מאפשרים לכל אחד, ללא תלות במיקומו, ללמוד, לתרגל ולהתמקצע על-מנת להתכונן בצורה מיטבית לבגרות במתמטיקה או פיסיקה .

לכל שאלה ניתן ליצור איתנו קשר
הצטרפו אלינו